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ABSTRACT: Plane strain compression tests, measuring
both axial and transverse forces, are performed on ultra-
high molecular weight polyethylene up to true axial strains
of �0.4. As the deformation proceeds, the transverse stress
becomes an increasing proportion of the axial stress, with
the proportion growing from its initial value of 0.5 up to a
value of 0.8. A constitutive model is applied that combines
Ogden models and Eyring processes. It is found that when
a Levy-Mises flow rule is used in conjunction with the Eyr-
ing model, the predicted ratio of transverse to axial stress

remains much smaller than that observed, and is not
greatly affected by changes in the Ogden exponent. How-
ever, when the flow rule is replaced by one that incorpo-
rates strain-induced anisotropy, realistic predictions are
possible. For each Ogden model, we associate a flow rule
for which the transverse strains in both the Ogden and Eyr-
ing models are individually zero. VVC 2008 Wiley Periodicals,
Inc. J Appl Polym Sci 111: 1190–1198, 2009
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INTRODUCTION

As polymers become used increasingly in structural
applications, there is a need for precise and quantita-
tive understanding of their mechanical behavior.
This is a nontrivial issue, since polymers become
nonlinear at moderate strains and exhibit creep,
stress relaxation, and strain-rate dependent yielding.
Any constitutive model should reflect these consid-
erations, while at the same time being useable in en-
gineering analyses. Experimental investigations are
required to define model parameters, and in many
cases the models are too complex for the data from
the customary uniaxial experiments to be sufficient
for this purpose. This has been established for a
large-strain elastic model of polypropylene by Sweeney
et al.1 who used plane strain extension of sheet
specimens to finalize the model parameters. Other
workers2,3 have used plane strain compression for
similar purposes. The state of plane strain is more
general than the uniaxial state as all three principal
strains are different from one another, and it can
be a crucial source of information, particularly if
both axial and transverse stresses are measured. In
this article, we address the problem of an engineer-

ing polymer with exacting requirements, and show
how plane strain data can have an important role
in the development of the constitutive model.
For constitutive modeling, we have adopted the

established technique of combining the Eyring pro-
cess with hyperelastic network models. The Eyring
process results in an appropriate form of the de-
pendence of stress on time and rate of strain. To
complete the specification of the plastic behavior, a
flow rule is required, the form of which is a subject
of discussion here. For a model to be successful, its
predictions must include the correct relationship
between the axial and transverse stresses in plane
strain. We show that this condition is much easier to
achieve when the hyperelastic model and the flow
rule are related in a particular way. We describe a
form of flow rule that includes strain-induced ani-
sotropy, and establish corresponding sets of Ogden4

hyperelastic models and flow rules of this form that
possess the desired relationship.
Although our treatment involves anisotropy, the

material is assumed to be initially isotropic. The ani-
sotropy evolves with strain, purely as the result of
the behavior of the hyperelastic model; the stiff-
nesses in the different principal directions are func-
tions of the principal strains, and become
significantly so at large deformations. This distin-
guishes our material models from those of initially
anisotropic polymers, the most elementary being of
oriented polymers such as fibers, where the small-
strain elastic properties are of interest.5 At large
strains, there have been other elastic models of ini-
tially anisotropic materials, the most fundamental
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being defined by the ‘‘neoclassical" strain energy
function, a generalization of the Gaussian model in
which chains are initially anisotropic and character-
ized by a chain shape.6 Other more recent
approaches to orthotropic hyperelasticity are due to
Bischoff et al.,7 Horgan and Saccomandi,8 Ehret and
Itskov,9 and Ogden and Saccomandi.10 Thus, a num-
ber of instances of anisotropic hyperelasticity have
been developed, mainly for rubbers and biological
materials, that could be applied more generally to
polymers if rate-dependent and yielding behavior
could be combined with them to give a more realis-
tic model. The question of how to introduce plastic-
ity into these systems in a way that takes account of
anisotropy has been addressed by a relatively few
workers, notably Van Dommelen and Meijer,11

working in the context of particle-modified poly-
mers. They model strain-induced anisotropy via the
effect of plastic strain on the yield strength in differ-
ent material directions. Our approach outlined
below, while showing some similarity, attacks the
problem via the direct effects of strain upon the flow
rule. We outline a method of adding plasticity into a
hyperelastic model in such a way as to essentially
preserve its three-dimensional response. Having
established a hyperelastic model with a qualitative
response (in terms of the ratios of principal stresses
for a particular strain) appropriate for a given mate-
rial, it then becomes possible to generalize to an
elastic–viscoplastic model that still possesses the
essentials of the desired behavior.

MATERIAL AND EXPERIMENTATION

In all tests ultra-high molecular weight polyethylene
(UHMWPE) grade GUR1050 was used, manufac-
tured by Hoechst and supplied by Orthoplastics,
Lancs. UK in the form of blocks produced by large-
scale compression molding using a proprietary pro-
cess. This form of processing customarily results in
isotropic material; evidence for the mechanical iso-
tropy of the material used here is presented below at
the end of this section. The molar mass of this grade
of polymer has been estimated in the range 5.5–6.0
� 106 g mol�1 using intrinsic viscosity measurements.12

The crystallinity of the sample was determined at a
value of 40.96% as quantified using Modulated Dif-
ferential Scanning Calorimetry performed on a TA
Instruments Q2000 DSC imposing a �0.5�C oscilla-
tion every 40 s onto a mean temperature ramp of
5�C min�1. The area under the nonreversing heat
capacity curve was divided by the heat of fusion
for a 100% crystalline sample, taken as 293 J g�1.

Plane strain compression tests were carried out at
room temperature using an Instron testing machine
in conjunction with the custom fabricated plane
strain cell shown in Figure 1. This device enables

both axial and transverse forces to be monitored; the
Instron load cell monitors the axial force and the
transverse force is measured by the load cell shown.
The Instron load cell was used as supplied, of 50 kN
capacity and sampling at 50 Hz. The transverse load
was measured by a compressive cell of 900N
capacity (model LFH-71 supplied by RDP Electron-
ics, Wolverhampton, UK) sampling at 1.25 Hz. No
smoothing or noise filtering has been applied to the
results presented here. Specimens were in the form
of cubes of side nominally 10 mm (mean 10.12 mm;
standard deviation 0.053 mm), with faces machined
to an average surface roughness of 5–6 lm. Room
temperature tests were conducted at constant
speeds, corresponding to increasing true strain rates.
Specimens were strained to a final extension ratio of
0.67, corresponding to a true strain of �0.4. The out-
puts from the axial Instron load cell and the trans-
verse load cell were synchronized using the clearly
observable load drop as the crosshead stopped at
the end of the experiment.
The specimens could not be observed during test-

ing, but their deformed states could be examined af-
ter removal from the test cell. Observations and
measurements with digital calipers then indicated
that the specimens retained their rectangular shapes,
with all surfaces plane, parallel surfaces remaining
parallel, and thus no sign of ‘‘barreling" type defor-
mation associated with friction at the main bearing
surfaces. The possibility of friction effects has been
explored further by uniaxial tests on circular

Figure 1 Plane strain cell.
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cylinders of the same material with bearing surfaces
prepared in the same way. Cylinders of length 10
mm and height 10 mm were compressed between
steel platens to true strains of �0.4 at strain rates in
the range 5.0 � 10�4 to 1.9 s�1 using the Instron test-
ing machine. Digital images of the specimen were
captured immediately after unloading and the speci-
men diameters were measured as a function of axial
distance. No changes in diameter were detectable
except at the highest strain rate of 1.9 s�1, in which
case the central diameter exceeded the end diame-
ters by 3%, giving a clearly barreled appearance.
Thus, it was established that the deformation was
uniform at strain rates up to 0.9 s�1. The effects of
friction were explored further using this test system
by the use of petroleum jelly at the bearing surfaces.
Operating at constant speed and at an initial strain
rate of 0.0164 s�1, the stress–strain curves for the
two conditions—with and without lubricant—were
found to be very close. At a true strain of �0.22,
stresses were on average 30.75 MPa (three speci-
mens; standard deviation 0.25 MPa) for unlubricated
specimens and 30.73 MPa (six specimens, standard
deviation 0.18 MPa) for lubricated specimens. We
conclude that, at the strain rates used in the plane
strain tests, frictional effects are negligible and the
tendency for barreling is insignificant.

A typical stress–strain result is shown in Figure 2
for the initial strain rate of 0.0164 s�1, where an av-
erage of five tests is presented. At the maximum
compressive true strain of 0.4, the average axial
stress and its standard deviation are 41.4 and 1.68
MPa, respectively. For the transverse stress, the cor-
responding figures are 36.1 and 1.36 MPa. The axial
stress–strain curve resembles those reported for uni-
axial compression by Kurtz et al.,13 with a point of
inflection at around a strain value of 0.1. Yield
points in this region have also been reported for
other polyethylenes14,15 and has been attributed to
c-shear deformation within the lamellae.16

To evaluate the assumption that the material is
initially isotropic, we examine the present results in
combination with a larger set of similar experiments
carried out at strain rates in the range 4 � 10�3 to
0.53 s�1. Specimens were compressed in directions
chosen randomly with respect to the directions asso-
ciated with the original compression molding opera-
tion. By examining the experimental ratio of the true
stresses r1 and r2, it would be possible to detect an-
isotropy in the initial material by observation of the
statistical distribution of the ratio r1/r2, which
remains essentially constant with respect to strain
rate. Significant anisotropy would manifest itself as
two or more peaks in the distribution. For the set of
42 experiments, the distribution of values taken at a
true strain of �0.36 (shown in Fig. 3) is symmetric
with a single central peak. The average ratio is 1.21,
with a prominent central peak of values in the range
1.19–1.23. We conclude that no significant mechani-
cal anisotropy is detectable.

CONSTITUTIVE MODELING

General Theory

A basic element of the constitutive model is an elas-
tic network in series with an Eyring process, such
that the total deformation gradient G is split into
elastic and plastic components Ge and Gp, respec-
tively:

G ¼ GeGp: (1)

The basis of the numerical approach is to split the
total deformation gradient into pure deformation D
and rigid body rotation R:

G ¼ DR: (2)

An incremental approach is used. During a given
time step, the plastic stretch at the end of the previ-
ous time step is D

p
0 , DD

p is the increment in plastic
stretch during the current time step, and De is the

Figure 2 Stress–strain results (true stress and true strain) at initial strain rate of 0.0164 s�1.
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elastic stretch. Then, the total deformation gradient
G is

G ¼ DeDDpD
p
0R: (3)

De, DDp, and D
p
0 include no rigid body rotations.

De and DDp are collinear and share principal direc-
tions that are in general different from those of D

p
0 .

We follow the strategy of Bonet and Wood17 and
make the initial estimate of De and De

i , by assuming
that there is no additional plastic strain:

De
i ¼ GR�1D

p�1
0 : (4)

For a given total deformation G, De, and DDp in
eq. (3) are derived via an iterative process to impose
the condition that the stresses in the network and
the Eyring process are equal. Plane stress conditions
are assumed. As justification for this, we note that, in
our plane strain experiments, there is no stress applied
to the specimen boundaries normal to the III direction,
so that the only possible source of along this direction
would be friction-induced shear at the other bounda-
ries, which we have established in Section 2 to be neg-
ligible. De defines the strain in the hyperelastic
process and has principal components in the plane keI
and keII. Stresses may be defined in a variety of ways,
one of which is by the one-term Ogden model:

ri ¼ C ðkei Þn � ðkeIkeIIÞ�n� �
i ¼ I; II (5)

where rI and rII are principal stresses, C and n are
material constants, and the assumption of incom-
pressibility has been applied for the elastic strains.

In this ‘‘series" model, the stress in the hyperelas-
tic network is the same as that in the Eyring process.
For the latter, the scalar strain rate _ep is determined

via the mean stress r and a driving stress s via the
relation

_ep ¼ A expðVprÞ sin hðVssÞ (6)

where A, Vp, and Vs are material constants, the latter
two being proportional to pressure and shear activa-
tion volumes, respectively, (following, e.g., Buckley
and Jones18 or Spathis and Kontou19). _ep is defined
in terms of the tensor plastic strain rate Lp,

_ep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3
Lp : Lp

r
(7)

where the strain rate is itself defined in terms of the
plastic deformation gradient as

Lp ¼ _DpDp�1: (8)

To fully define Lp, we require the additional con-
dition that it be collinear with the stress tensor, plus
a flow rule. Rather than use a conventional Levy-
Mises rule, we adopt a more general approach that
allows for the development of anisotropy. Hill20 pro-
duced a flow rule for orthotropic material. Adapting
Hill’s rule with Lp defined along the directions of
orthotropy with components L

p
ij and rij, the compo-

nents of the Cauchy stress in the same axes gives

L
p
11 ¼ _ep Hðr11 � r22Þ þ Gðr11 � r33Þ½ �=3s

L
p
22 ¼ _ep Fðr22 � r33Þ þHðr22 � r11Þ½ �=3s

L
p
33 ¼ _ep Gðr33 � r11Þ þ Fðr33 � r22Þ½ �=3s

L
p
23 ¼ _epLr23=3s

L
p
13 ¼ _epMr13=3s

L
p
12 ¼ _epNr12=3s

(9)

Figure 3 Distribution of values of the ratio axial stress/transverse stress for plane strain compression experiments taken
at an axial true strain of �0.36.
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where F, G, H, L, M, and N are anisotropy parame-
ters. Equation (9) represents incompressible plastic

flow. From the definition (7) of _ep, it follows that the
driving stress s is given by

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3

½Hðr11 � r22Þ þ Gðr11 � r33Þ�2 þ ½Fðr22 � r33Þ þHðr22 � r11Þ�2

þ ½Gðr33 � r11Þ þ Fðr33 � r22Þ�2 þ 2½L2r2
23 þM2r2

13 þN2r2
12�

 !vuut (10)

when F ¼ G ¼ H ¼ L ¼ M ¼ N ¼ 1, the relations (7)
and (9) are equivalent to the Levy-Mises flow rule.
When the anisotropy is strain-induced, the anisot-
ropy parameters are initially unity. The principal
planes of orthotropy are then determined by the
strains in a manner that is particular to the material;
it could be assumed that the principal total strain,
principal elastic strain, or principal plastic strain
would be the defining factor. Hill’s flow rule has
been mainly applied to metals, but there is no
underlying physics that restricts it to any particular
material type. It is a suitable model for strain-
induced anisotropy, as the assumption of orthotropy
enables us to make a direct association with princi-
pal directions of strain. There are precedents for its
application to polymer systems.11,21

Plane Strain Application

For the experiments that concern us here as
described above conducted using the apparatus of
Figure 1, the three strains—total, elastic, and plas-
tic—remain collinear and the directions of ortho-
tropy are well defined. The form of experiment also
ensures that the principal stresses remain collinear
with the principal strains. In this simplified case, we
may express the anisotropy parameters as a function
f of principal strain. Then, the flow rule reduces to

L
p
I ¼ _ep½fðlIIIÞðrI � rIIÞ þ fðlIIÞðrI � rIIIÞ�=3s

L
p
II ¼ _ep½fðlIÞðrII � rIIIÞ þ fðlIIIÞðrII � rIÞ�=3s

L
p
III ¼ _ep½fðlIIÞðrIII � rIÞ þ fðlIÞðrIII � rIIÞ�=3s

(11)

where the li are yet to be specified. Credible possi-
bilities for the li include principal total extension
ratios ki, principal elastic extension ratios kei or prin-
cipal plastic extension ratios kpi . The arguments of f
are determined by symmetry and to ensure initial
isotropy f(1) ¼ 1. The driving stress now becomes

s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3

½f ðlIIIÞðrI � rIIÞ þ f ðlIIÞðrI � rIIIÞ�2

þ ½f ðlIÞðrII � rIIIÞ þ f ðlIIIÞðrII � rIÞ�2

þ ½f ðlIIÞðrIII � rIÞ þ f ðlIÞðrIII � rIIÞ�2

0
BB@

1
CCA

vuuuuut :

(12)

We now apply a deformation corresponding to
incompressible plane strain, with

kI ¼ k; kII ¼ 1 and kIII ¼ 1=k: (13)

The three direction is unrestrained, with

rIII ¼ 0: (14)

According to eqs. (1) and (13),

keII k
p
II ¼ 1: (15)

We wish to explore the conditions when

keII ¼ kpII ¼ 1: (16)

This is true only when the condition (16) results in
equilibrium, with both eq. (5) and the pair of eqs.
(11) and (12) predicting the same stress rII; equally,
the ratio rI

rII
must be the same for both the Ogden

and Eyring models. For the Ogden model, with keI ¼
ke and with eq. (16), eq. (5) gives

rI

rII
¼ ðkeÞn þ 1: (17)

For (16) to apply for the Eyring process, the sec-
ond of eqs. (11) must yield zero plastic strain rate.
With eq. (13), this implies

0 ¼ f ðlIÞrII þ fðlIIIÞðrII � rIÞ: (18)

We now propose for the power law function f

f ðliÞ ¼ lmi ði ¼ I; II; IIÞ (19)

and make the associations lI ¼ keI and lIII ¼ keIII. Then,
with keI ¼ ke and with incompressibility giving keIII ¼
1/ke, (18) becomes

ðkeÞmrII þ ðkeÞ�mðrII � rIÞ ¼ 0 (20)

or alternatively

rI

rII
¼ ðkeÞ2m þ 1: (21)

Inspection of eqs. (17) and (21) reveals that eq.
(16) is satisfied when 2m ¼ n. This reveals a set of
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natural pairings of single-term Ogden models and
flow rules of this power law form. It should facilitate
the construction of effective viscoplastic models.
Suppose, for a particular material, we have identi-
fied an Ogden model with realistic predictions of
the stress ratio rI/rII; then, by the use of an appro-
priate flow rule, it becomes possible to add a plastic
mechanism such that the principal stress ratio of the
resulting model is substantially unchanged. The use
of a conventional Levy-Mises flow rule (i.e., f ¼ 1 in
(11); m ¼ 0 in (19)) in this context can greatly change
the stress ratio of the combined model from that of
the original Ogden model, simply because the softer
mechanism in a series model will tend to dominate
the overall behavior. These effects will be demon-
strated further below.

We note that, for the eight-chain model of Arruda
and Boyce22 the principal stress ratio in plane strain
is identical with that for the Gaussian model (n ¼ 2),
so the flow rule required for eq. (16) to apply corre-
sponds to m ¼ 1.

In the above treatment, we have adapted Hill’s
flow rule by assigning strain dependence to the ani-
sotropy parameters F, G, H, L, M, N (eq. (9)). This is
in contrast to the approach of Van Dommelen and
Meijer,11 and of Tzika et al.21 who adapted Hill’s
yield criterion,20 and fixed the values of the anisot-
ropy parameters using their dependence on yield
stresses, which are in turn determined by their de-
pendence on plastic strain. Our approach, with its
more direct involvement of strain rate via the flow
rule, is a natural accompaniment to our use of the
Eyring model.

MODELING OF EXPERIMENTS

In Figure 2, for both axial and transverse curves, we
can identify a yielding process at a strain of around
0.1, followed by a decreased slope. This suggests
that a two-arm model is the minimum requirement.
The development above is for a single arm. In a
two-arm model, the total stress tensor is the sum of
the stress tensors in each arm, and the strain in each
arm is identical. We assign the subscripts X and Y to
the quantities in the respective arms. The develop-
ment of the two-arm model proceeds straightfor-
wardly, with eq. (1) being replaced by

G ¼ Ge
XG

p
X ¼ Ge

YG
p
Y: (22)

The stresses are given by Ogden models as

riX ¼ CXðkni � ðkIkIIÞ�nÞ
riY ¼ CYðkni � ðkIkIIÞ�nÞ i ¼ I; II (23)

where the principal directions in the two arms are
generally different from each another, but coincide
and are denoted by I and II in the modeling of the
experiments here. Note that the same Ogden expo-
nent is used in each arm. Two Eyring processes are
defined by

_epX ¼ AX expðVpXrXÞsinhðVsXsXÞ
_epY ¼ AY expðVpYrYÞsinhðVsYsYÞ

: (24)

With rIII ¼ 0, the driving stresses from (11), using
the same power law for f in each arm, are

sX ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3

½lmIIIXðrIX � rIIXÞ þ lmIIXrIX�2

þ ½lmIXrIIX þ lmIIIXðrIIX � rIXÞ�2

þ ½lmIIXð�rIXÞ þ lmIXð�rIIXÞ�2

0
BBB@

1
CCCA

vuuuuuut

sY ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3

½lmIIIYðrIY � rIIYÞ þ lmIIYrIY�2

þ ½lmIYrIIY þ lmIIIYðrIIY � rIYÞ�2

þ ½lmIIYð�rIYÞ þ lmIYð�rIIYÞ�2

0
BBB@

1
CCCA

vuuuuuut

: (25)

The flow rule becomes

L
p
IX ¼ _epX½lmIIIXðrI � rIIÞ þ lmIIXrI�=3sX

L
p
IIX ¼ _epX½lmIXrII þ lmIIIXðrII � rIÞ�=3sX

L
p
IIIX ¼ _epX½lmIIXð�rIÞ þ lmIXð�rIIÞ�=3sX

L
p
IY ¼ _epY½lmIIIYðrI � rIIÞ þ lmIIYrI�=3sY

L
p
IIX ¼ _epY½lmIYrII þ lmIIIYðrII � rIÞ�=3sY

L
p
IIIX ¼ _epX½lmIIYð�rIÞ þ lmIYð�rIIÞ�=3sY

: (26)

This scheme has been implemented numerically as
a user-defined subroutine (UMAT) in the finite ele-
ment package ABAQUS. The results discussed
below result from runs of the package at uniform
strain. The implementation bears some similarity to
the two-process scheme described by Sweeney
et al.,23 which was applied to the early stages of
polymer deformation and made use of the conven-
tional Levy-Mises flow rule.

TABLE I
Eyring Process Properties

VsX (MPa�1) VpX (MPa�1) VsY (MPa�1) VpX (MPa�1) AX (s�1) AY (s�1)

1.6 0.096 1.8 0.11 1.0 � 10�6 1.4 � 10�8
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The required input data are the Ogden parameters
CX, CY and n; the Eyring parameters VpX, VpY, VsX,
VsY, AX and AY; and the flow rule exponent m. In
the following analysis, we keep the Eyring parame-
ters at fixed values, such as to be consistent with re-
alistic levels of yield stress and its rate dependence,
and explore the effects of varying the Ogden param-
eters and the flow rule. The Eyring parameters are
listed in Table I. In line with the findings of other
workers for glassy polymers such as Nazarenko
et al.,24 Bauwens-Crowet et al.,25 and Govaert
et al.,26 we have assumed that Vp ¼ 0.06Vs to fix the
values of VpX and VpY.

In Figure 4, we plot the experimental ratio rI/rII

in plane strain compression (for initial strain rate
0.0164 s�1 corresponding to the results of Fig. 2) to-
gether with Ogden predictions of it for various expo-

nent values. The intention here is to give guidance
for the exponent value to be used in the model; it is
a source of guidance only, as the total strain as
measured experimentally differs from the elastic
strain. The indication is that, of the possible choices,
an n value in the range of 5–6 would be most
appropriate.
We begin the modeling by establishing a baseline

result using Gaussian networks (n ¼ 2 in eq. (23))
and Levy-Mises flow rule (m ¼ 0 in eqs. (25) and
(26)). CX and CY are assigned values 12 and 120
MPa, respectively, to give realistic predictions of rI.
The results are plotted in Figure 5 in terms of the
stress ratio rI/rII (case ‘‘n ¼ 2, m ¼ 0"). The ratio
does not decrease greatly from the initial value of 2
and is in strong disagreement with the experimental
result.

Figure 4 Experimental (rate 0.0164 s�1) and Ogden stress ratios.

Figure 5 Experimental (rate 0.0164 s�1) and model stress ratios for various Ogden model and flow rule combinations.
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We next use an Ogden model with a more realistic
plane strain response, n ¼ 5, but retain the Levy-
Mises flow rule (case ‘‘n ¼ 5, m ¼ 0" in Fig. 5). The
coefficients CX and CY are assigned values 4.8 and
48 MPa, respectively, to produce elastic responses
with the same initial slope as in the previous case
where n ¼ 2. The situation is slightly improved, but
at larger strains the behavior is dominated by the
flow rule and begins to resemble the n ¼ 2 case.

For the third case, we use the same Ogden model
with n ¼ 5 together with a flow rule as given in eq.
(26) with m ¼ 2.5 and li ¼ kei (i ¼ I, II, III). As
argued above, since m ¼ 2n the response of
the model in terms of rI/rII should resemble that of
the Ogden model alone. As shown in Figure 5 (case
‘‘n ¼ 5, flow rule elastic strain to power 2.5") the
response is closer to that of the Ogden model, but
the stress ratios are higher at any given strain com-
pared with Figure 4. This is because the plot in Fig-
ure 5 is against total strain, whereas eqs. (17) and
(21), and Figure 4, concern elastic strain.

In view of the above finding, we have examined
the effectiveness of making the anisotropy in the
flow rule a function of the total strain rather than
the elastic strain. Thus, the flow rule is as given in
(26) with li ¼ ki (i ¼ I, II, III) and m ¼ 2.5. The same
Ogden model is again used with n ¼ 5. The
response is shown in Figure 5 as the case n ¼ 5,
flow rule total strain to power 2.5. Although it is by
no means a good fit to the experiments, it is greatly
more realistic than the predictions that use a conven-
tional flow rule.

For this final case, the stress predictions are com-
pared with the experiment in Figure 6. The relative
simplicity of the model, with two processes only,
results in yielding predictions that are more abrupt

than is observed. However, the results are at a use-
ful level. The model predictions for this form of veri-
fication are greatly improved in comparison with the
other schemes considered.

CONCLUSIONS

Nonuniaxial experimental data are essential in the
evaluation of constitutive models. Plane strain com-
pression experiments on UHMWPE have shown that
the transverse stress is greatly at variance with the
predictions of a constitutive model that makes use
of a conventional Levy-Mises flow rule. A Hill-type
flow rule for anisotropic material, in which the ani-
sotropy is strain-induced and governed by a power
law function of extension ratio, has been shown to
give much improved predictions when combined
with an appropriate hyperelastic network model. A
one-to-one correspondence between Ogden models
and these flow rules has been established. When a
corresponding pair is used within a series model of
elastic and plastic elements, the transverse strain is
zero in both elements. This enables the model
behavior to be easily controllable and the desired
transverse stress response in plane strain to be
obtained. A two-Eyring process model has been
developed on this basis to produce realistic predic-
tions of the plane strain compression behavior of
UHMWPE. Network models other than Ogden’s
could, in principal, be matched with flow rules that
ensure the satisfaction of the condition (16).
In conventional theories, an isotropic flow rule is

used that is entirely independent of the network
model. This work suggests that more effective mod-
els result when there is an explicit connection
between the flow rule and the network. This may

Figure 6 The case ‘‘n ¼ 5, flow rule total strain to power 2.5’’ compared with the experimental result (rate 0.0164 s�1).
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reflect a connection at a physical level, as the net-
work develops anisotropy on straining.
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